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ABSTRACT
Machine-generated documents such as email or dynamic web
pages are single instantiations of a pre-defined structural
template. As such, they can be viewed as a hierarchy of
template and document specific content. This hierarchical
template representation has several important advantages
for document clustering and classification. First, templates
capture common topics among the documents, while filter-
ing out the potentially noisy variabilities such as personal in-
formation. Second, template representations scale far better
than document representations since a single template cap-
tures numerous documents. Finally, since templates group
together structurally similar documents, they can propagate
properties between all the documents that match the tem-
plate. In this paper, we use these advantages for document
classification by formulating an efficient and effective hier-
archical label propagation and discovery algorithm. The la-
bels are propagated first over a template graph (constructed
based on either term-based or topic-based similarities), and
then to the matching documents. We evaluate the perfor-
mance of the proposed algorithm using a large donated email
corpus and show that the resulting template graph is sig-
nificantly more compact than the corresponding document
graph and the hierarchical label propagation is both efficient
and effective in increasing the coverage of the baseline doc-
ument classification algorithm. We demonstrate that the
template label propagation achieves more than 91% preci-
sion and 93% recall, while increasing the label coverage by
more than 11%.

Categories and Subject Descriptors
H.4.3 [Information Systems Applications]: Communi-
cations Applications — Electronic mail
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1. INTRODUCTION
Email is one of the most popular and frequently used

web applications. Even with the more recent advent and
widespread adoption of social networks, email continues to
be the most pervasive form of online communication. Fur-
thermore, it remains inextricably tied to user online identity.
For example, the vast majority of account-based online ser-
vices require an email address for validation purposes. This
practice has effectively designated the inbox as a central and
personal hub for the majority of online user activity, and will
continue to act so for the foreseeable future.

According to the Radicati group [23], there are just over
2.5 billion email users in the world. This number is pre-
dicted to increase by 12% in four years time. The average
consumer currently sends and receives an average of about
61 emails per day while business users send and receive an
average of about 121. All together, about 196 billion emails
are sent and received per day and is predicted to increase
to 228 billion by 2018. This proliferation of email has led
to the notion of email overload, in which users become over-
whelmed when they can no longer organize, manage, and
process their emails as quickly as they receive them [10].

The most widely adopted tools employed to manage this
influx of emails—filters and labels—have not changed in
years. Typical filters allow the user to sort mail based on
a combination of header information and search terms. An
example filter might automatically move all incoming emails
received from “auto-confirm@amazon.com” to a Shopping
folder. While filters can be powerful tools for managing
emails from specific senders or sender domains, this is also
largely the extent to which they are practical. For exam-
ple, if a user wishes to label all incoming order confirmation
emails to a Shopping folder, the user would need to man-
ually generate filters for each potential sender. Given the
vast number of e-commerce sites accessible on the web to-
day, creating filters for each potential sender would require
an insurmountable effort of creating relevant filters.

It is also important to note that email is no longer used
solely for communication. It is used for information archiv-
ing and task management as well [11]. Automated machine-
learned categorization of email can be an exceptionally pow-
erful tool to improve user efficiency in inbox management by
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Dear Bob,

Thank you for your Dr. Seuss Store purchase!

Order No. 98213

Items:
Cat in the Hat
Lorax

Tax: $1.17
Total price: $10.97

Dear Alice,

Thank you for your Dr. Seuss Store purchase!

Order No. 23432

Items:
Green Eggs and Ham
Fox in Socks
Dr. Seuss's ABC

Tax: $2.39
Total price: $15.04

Example documents

Dear [Name],

Thank you for your Dr. Seuss Store purchase!

Order No. [#]

Items: [repeated Product]

Tax: [Currency]
Total price: [Currency]

Template

Figure 1: Fictional example of two documents that were
generated from the same structural template.

categorizing the email by logical folders or labels and reduc-
ing the inbox overload.

Categorization also produces an additional layer of seman-
tic information that can be used to benefit the user experi-
ence. For example, consider an email that is automatically
categorized as a flight itinerary. In this case, it would be
beneficial to the user that the email service highlights this
document and brings it to the forefront or alert the user of
its importance near the relevant time of departure. On the
other hand, a document labeled as a sales promotion might
be skipped past the inbox altogether and archived for po-
tential lookup later. Furthermore, email categorization can
be used to help extract data from the email that is most
relevant for a particular category.

In this paper, we present a novel technique for the cate-
gorization of machine-generated emails. We use structural
template representations to create a scalable, robust, and ac-
curate classifier that increases labeling coverage over a high-
precision baseline classifier that does not employ structural
template information.

We specifically target machine-generated emails for the
following reasons: (a) they constitute a majority percentage
of all emails [2], (b) machine-generated emails are very often
instantiations of pre-defined structural templates. Figure 1
demonstrates a simple example of a structural template from
a fictional Dr. Seuss store that is used to generate multi-
ple documents by instantiating the template with the user-
specific information (user name, purchased items, prices and
order number).

Structural templates provide two important advantages
for clustering and categorization. The first is that they scale
better than emails since one template represents numerous
emails. The second is that since templates represent struc-
turally similar documents, they effectively capture common
topics between documents while filtering out potential noise,
such as personal information.

We use these advantages to formulate and explore three
techniques for efficient and effective categorization. The first
technique labels emails based on the majority label among
the underlying emails that their corresponding template was
inferred from. This simple classifier is a first step towards
utilizing templates for email classification and does not take

into consideration similarities or relationships between dif-
ferent templates.

The second technique utilizes inter-template similarities to
build a centroid-based classifier. Templates are represented
using either term-frequencies extracted from their fixed text
or as a distribution of topics as inferred by Latent Dirichlet
Allocation [8]. Fixed centroids are calculated for each label
and are comprised of only those templates whose underlying
email samples all correspond to a single label. Templates
consisting of two or more labels in their underlying emails
are labeled according to their closest centroid.

However, single centroids are often too coarse to ade-
quately classify templates, which belong to the same label
but may be vastly different from one another. Thus, we
present a third technique which naturally follows the cen-
troid approach, classifying templates using graph-based la-
bel propagation [24, 27]. Again, templates are represented
using either bag-of-words or topic distributions, and dis-
tances or edges between templates are measured in terms
of the similarity between their representations. Seed nodes
are assigned from the same set used to calculate the cen-
troids in the previous technique. These nodes are the first
to emit their labels to their neighbors, then those neigh-
bors emit them to their neighbors, and so on until the entire
graph is labeled.

Once the label propagation process over the template graph
is complete we propagate the label distributions of the tem-
plates to their underlying emails. We refer to this process
as hierarchical label propagation.

Note that while the template-based categorization tech-
niques discussed in this paper are focused on email data,
they are general enough to be applied to any machine-generated
documents including web pages, call data records, or govern-
ment forms, among many others. To the best of knowledge,
this is the first publicly available study on leveraging struc-
tural templates for the purpose of improving categorization
of machine-generated documents in general, and specifically,
machine-generated emails.

2. MODEL
In this section, we present the formal description of the hi-

erarchical label propagation algorithm over a given machine-
generated corpus. The algorithm operates in three main
stages.

First, documents in the corpus are grouped by their under-
lying structural templates. Second, we construct a partially
labeled graph over the template representations. Finally, we
run a hierarchical label propagation algorithm over the tem-
plate graph, which propagates the derived template labels
to the individual document level.

The remainder of this section is organized as follows. In
Section 2.1 we describe template representation methods for
a machine-generated email corpus. In Section 2.2 we de-
scribe how these template representations can be organized
as a graph. Finally, in Section 2.3, we describe several meth-
ods for label assignment and propagation over this template
graph.

While in this section we focus on templatization and la-
bel propagation over an email corpus, the presented algo-
rithms are general enough to be applied to any templatizable
machine-generated document collection. Therefore, hence-
forth, we use the terms document and email interchangeably.
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Figure 2: Template representation for graph construction.

2.1 Template Representations
There are multiple ways to derive structural templates

from a stream of machine-generated documents. In smaller,
specialized collections, the relation between the generating
template and the document may be given a priori. For
larger, web scale collections, techniques like locality sensi-
tive hashing of document header text have been recently
proposed [16].

There has been some previous work on template represen-
tation of machine-generated documents for email collections
as well. Specifically relevant to this paper is work by Ailon
et al. [2]. We use the approach proposed in their work, and
map each incoming email document to a template that is
uniquely identified by a

<sender, subject-regexp>

tuple. Subject regular expressions are obtained by mining
frequent patterns and removing unique identifiers and per-
sonalized information, like names, from email subjects, as
described by Ailon et al. [2].

In contrast to Ailon et al. [2], our approach goes beyond
associating an email with a subject regular expression. For
the purpose of template representation, we are interested in
deriving (a) a textual representation of a template based on
the content of the documents matching the template, and
(b) a label distribution of the template.

This dual representation is then used to construct a tem-
plate graph. Figure 2 summarizes this representation pro-
cess, which is formally described next.

2.1.1 Textual Template Representation
Formally, we define template T as a set of documents

DT = {D1, . . . , Dn} matching a template identifier, as ex-
pressed by the <sender, subject-regexp> tuple.

To derive a textual representation of a template, we tok-
enize the set of documents DT, and derive a set of unique
terms per template. Generally, this corresponds to a bag-
of-words textual representation of the template.

Given a template term x, we define its support Sx as a
number of documents in DT that contain the term, or for-
mally:

ST
x = |{D|D ∈ DT ∧ x ∈ D}| (1)

We define the template fixed text as a set of terms for
which the support is greater than some (large) fraction of
the number of template documents, or formally:

FT = {x| S
T
x

|DT| ≥ τ}, (2)

where 0 < τ < 1 is set to a large fraction to remove personal
information from the resulting template fixed text represen-
tation.

We then use the template fixed text representation FT, as
a representation of a single node in a template graph. Note
that this template representation addresses several impor-
tant issues.

First, we only keep the fixed text of the template under-
lying any of the documents in the set DT. We remove noise
and variabilities that are a result of introducing personal
information into the documents. In this way, the template
graph represents the true aspects of the underlying collec-
tion, and not those of its particular instantiations.

Second, note that Equation 2 ignores the actual number
of documents used to construct the template. Therefore,
each template is given the same weight, with no regard to
the number of documents that were used to construct the
template. This is beneficial for document collections that
follow power law distributions. For instance, for email col-
lections, document representation would be dominated by
emails from more popular email senders, while template rep-
resentation avoids this problem.

Finally, the resulting representation is significantly more
compact than document representation, since a single tem-
plate may cover hundreds or thousands of documents.

2.1.2 Topic Models for Template Representation
In addition to using single terms for template represen-

tation, we experiment with modeling templates using topic
models [8]. We run a standard Latent Dirichlet Allocation
topic modeling over the fixed text of the templates (see
Equation 2). We then use the resulting topics along with
their weights as template representations instead of the bag-
of-words template representation.

2.1.3 Label Distribution
Each document associated with a template may be la-

beled by some classifier. Given some labeling scheme with
m distinct labels, we associate each template with a label
distribution:

LT = {p(L1|T), . . . , p(Lm|T)}, (3)

where the probability of a label given a template is simply a
fraction of documents in the set DT containing the label. As
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Method Similarity Metric Edge Type

Cosine Similarity

∑
x∈FTi ,F

Tj
w(x,Ti)w(x,Tj)√∑

x∈FTi
w(x,Ti)2

√∑
x∈FTj

w(x,Tj)2
Undirected

KL Divergence exp(−
∑

x∈FTi∩FTj p(x|Ti) log p(x|Ti)
∼
p(x|Tj)

) Directed

Table 1: Template graph construction methods. We use either cosine similarity or KL divergence to define a weighted edge
between a pair of templates (Ti,Tj).

document labeling may be incomplete, we assign an empty
label L∅ to documents that were not assigned any labels by
the classifier.

2.2 Template Graph Construction
In this section we explain how the template graph is con-

structed given the fixed text representation described in the
previous section.

Graph edges are constructed by selecting the k-nearest
neighbors per node by similarity. We calculate edge weights
using two metrics, cosine similarity and KL divergence. The
two metrics used for graph construction are widely used
for text similarity in information retrieval literature. In
particular, KL divergence has been shown to be useful for
graph construction over textual corpora [17]. The final edge
weights are then computed by normalizing the weights of all
outgoing edges from a node to sum up to one.

The weight of term x in template T is denoted by w(x,T).
For bag-of-words terms, this is a binary weight, which avoids
over-weighting repeated fixed terms in the template (e.g.,
repetitions of the word price in receipts). For LDA topic
representations, this is a topic weight assignment.

For further derivations we also define term probability

p(x|T) =
w(x,T)∑

x∈FT w(x,T)
, (4)

and its smoothed version

∼
p(x|T) =

w(x,T) + ε∑
x∈FT w(x,T) + |FT|ε , (5)

where ε is a small constant used for Laplacian smoothing.
Table 1 provides details on both the cosine similarity and

the KL divergence metrics for graph construction.

2.3 Label Assignment and Propagation
Recall, from Section 2.1 that we associate a label distribu-

tion with a template. In this paper, we assume an existence
of an underlying high-precision / low-recall classifier that
assigns a single label to each document. Template label dis-
tribution is based on these document-level labels. The de-
scription of the document-level classifier is out of the scope
of this paper, and for the remainder of this section, we as-
sume that this classifier may be based on either hand-written
rules or a supervised model that is specifically optimized for
document-level precision. Such classifiers are common in
critical user-facing tasks, where the cost of false positives is
very high. An example of such a task is email spam detec-
tion, where marking something as spam may prevent a user
from ever seeing an email.

In such high-precision scenarios, the classifier will err on
the side of caution. Our approach enables grouping classifier

decisions by a structural template, and improving the clas-
sifier recall, without sacrificing precision. Therefore, in the
models described in the next sections we develop methods to
assign a single optimal label LT

OPT to a template based on
the label distribution of its documents and the label distri-
bution of its neighboring templates in the template graph.

Given that all the documents come from the same under-
lying template, the classifier decision should be unanimous
for the template, which is the property we leverage in the
majority label approach described in Section 2.3.1.

In addition, similar templates should have similar labels,
which is addressed by the centroid similarity and the hier-
archical label propagation approaches described in Section
2.3.2 and Section 2.3.3, respectively.

2.3.1 Majority Label
The majority labeling classifier is our most direct method

for labeling documents by way of their corresponding tem-
plates. We use this classifier as a baseline for comparison
against more advanced graph-based techniques.

As explained in Section 2.1, a template is assoicated with
a label distribution LT. The majority label classifier thus
labels a template according to the label which is assigned to
more than 50% of the documents in the template. Formally,
the assigned label for template T is determined as:

LT
OPT =

{
Li if exists Li s.t. p(Li|T) > 0.5

L∅ otherwise

For instance, if template T is comprised of 100 emails,
80 of which are labeled Receipt and 20 of which are labeled
Finance by the baseline document classifier, then LT

OPT =
Receipt and all 100 emails in DT will be relabeled as Receipt.

On the other hand, if template T is comprised of 100
emails, with ten labels and ten emails assigned to each label,
LT

OPT = L∅, and the emails in DT will not be relabeled.
Note that the majority label approach utilizes solely intra-

template information for classification. It thus ignores the
template graph structure, which is addressed by the ap-
proaches discussed in the next sections.

2.3.2 Centroid Similarity
The centroid similarity approach takes advantage of inter-

template relationships for template label assignment. Tem-
plates are represented using their fixed text FT, as discussed
in Section 2.1. We then derive a set of seed templates for
each label Li (excluding the empty label) such that

SLi = {T|p(Li|T) = 1}. (6)

In other words, seed templates are templates for which label
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assignment is already provided with 100% confidence by the
underlying high-precision document classifier.

For each seed template set SLi , we compute its centroid
vector by averaging the fixed text vectors FT of its tem-
plates. Then, for every non-seed template T with label dis-
tribution LT, we compute its similarity to the centroids of
the labels in LT. Similarity is computed using either one of
the metrics shown in Table 1. We then assign the label of the
closest centroid to template T and relabel all the documents
in the template accordingly.

For instance, for a template comprised of 20 Receipt emails,
20 Finance emails emails, and 20 unlabeled emails, we will
compute its distance to the Receipt and Finance centroids.
If the Receipt centroid is the closest to the template, we will
relabel all the 60 emails in the template as Receipt.

Note that unlike the majority labeling approach, the cen-
troid similarity approach can assign labels to templates with
uniform label distributions. It can even assign labels to tem-
plates in which the majority of the emails are unlabeled.

Centroid similarity leverages to some degree the structure
of the template graph, however it only considers template
aggregates (centroids) and not individual templates. If cen-
troids represent clusters that are very broad, this could lead
to a loss of precision in labeling, which we address by intro-
ducing the hierarchical label propagation approach.

2.3.3 Hierarchical Label Propagation
While the centroid similarity technique generally improves

over majority labeling, it is built on the very broad assump-
tion that a label has a single global centroid from which all
templates of that label can be derived. However, this may
not be the case for all labels.

Consider for example a Travel label which is comprised of
subcategories such as flight itineraries, hotel reservations,
and car rental information. While the intra-subcategory
templates may be closely clustered together (i.e. have high
similarities between one another in terms of shared vocabu-
lary), it is not clear if the same holds for the inter-subcategory
templates as well. Hence, we must consider the possibility
that a single label will in fact have multiple clustering cen-
ters and cannot be represented by a single centroid.

Label propagation [27, 26] is a well known graph algo-
rithm which propagates labels between neighboring nodes
weighted by similarity. In our case, nodes are represented
by templates and the graph is constructed as described pre-
viously in Section 2.2.

The label propagation algorithm that we use in this work
is simple, yet effective. It operates in a hierarchical two-stage
fashion. At the first stage, we run the label propagation
on the template graph. At the second stage we propagate
the labels derived on the template level to the individual
documents.

Template propagation stage. We first construct a graph
G = (V,E,W ) as described in Section 2.2. Here, V = {T}
refers to the set of template nodes, E is the set of edges
(between a template node and its k-nearest neighbors) and
W is the edge weight matrix computed using KL divergence
or cosine similarity. We use a set of labeled seed nodes
S ⊂ V as defined in Equation 6 and provide this as input to
the algorithm. The label set is L, where the size |L| = m.
The goal of the template label propagation algorithm is a
soft assignment of labels LT to each template node T in the
graph [7, 26, 27, 24].

Our method uses the EXPANDER [24] framework and
algorithm for propagation and learning label distributions.
The propagation procedure utilizes an efficient iterative al-
gorithm which defines an approximate solution at the (i +
1)th iteration, given the solution of the (i)th iteration. In
the first iteration of template propagation, seed nodes broad-
cast their labels to their k-nearest neighbors. Each node that
receives an incoming broadcast from at least one neighbor-
ing node updates its existing label distribution according
to the weights of the incoming message and the transmit-
ted label distribution. In subsequent iterations, all nodes
which have some label distribution participate in broadcast-
ing their label distributions, and the procedure repeats until
the propagated label distributions converge. In practice, the
algorithm converges within a few (k = 10) iterations.

Document propagation stage. After convergence of the
template propagation stage, we further propagate the labels
from the templates to their documents. For this stage, we
simply propagate the most likely label of the template to all
of its constituent documents. Formally,

LT
OPT = arg max

Li

p̂(Li|T),

where p̂(Li|T) denotes the probability of label Li according

to distribution L̂, after the template propagation stage.
The two-stage hierarchical label propagation has two main

advantages over the previously discussed methods. First,
unlike the centroid similarity approach, it leverages the ini-
tial template label distribution as a prior distribution in the
template propagation stage. Second, it iteratively updates
this prior distribution based on the evidence from the neigh-
boring nodes in the template graph, and propagates the up-
dates to the template constituent documents. In Section 4
we show that these advantages lead to the superior perfor-
mance of the hierarchical label propagation method com-
pared to the other baselines.

3. RELATED WORK
In this section we discuss the state of the art techniques

for email classification, including threading, foldering, and
ranking, as well as techniques for template induction and
label propagation.

3.1 Email Organization
Popular email management techniques include threading,

foldering, and ranking.
Text classification has been one of the more popular ma-

chine learning applications over the last couple decades. Ap-
plications include language identification [19], genre analy-
sis [13], and sentiment classification [20]. Automated email
management methods include email categorization, which
often employ text classification techniques. Bekkerman et
al. explicitly explore the challenges of applying traditional
document classification techniques, such as maximum en-
tropy classifiers, naive bayes classifiers, and support vector
machines, to email foldering [6]. They present a new formu-
lation of the winnow algorithm and conclude with a discus-
sion on the remaining challenges and difficulties that exist
in email foldering.

Email threading is a technique in widespread use today
that visually groups related emails together. Specifically,
emails are threaded by header information, such as sender
email addresses, subject string, and reply and forward pre-
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fixes. This technique is predominantly used to thread per-
sonal communications. However related machine-generated
emails are often left unthreaded. For example, an e-commerce
site might send multiple emails to a single user in response to
a purchase. The first email might be a receipt or confirma-
tion, followed by a shipment notification email, and followed
finally by a delivery announcement or survey. Oftentimes
each email in this correspondence has different subject lines
and even different sender aliases which correspond to the
specific notification type of the email. Current systems can-
not thread these emails accurately due to their misaligned
header information. Ailon et al. have presented techniques
to thread these machine-generated emails through “causal
threading” which leverages templates, learns causal relation-
ships between emails from similar senders, and automati-
cally threads incoming emails with distinct headers [2].

Automated email ranking is a relatively new technique
which aims to assist in email management by classifying
emails into important and unimportant categories. The goal
is to reduce the amount of overhead required by the user in
manually sorting through emails to find those with the high-
est importance. Possibly the most popular automated email
ranking system in widespread use today is Google’s Gmail
priority inbox. This system ranks emails by the probabil-
ity that a user will interact with an email in a meaningful
way (e.g. open, reply, correct importance level) and within
some amount of time from delivery [1]. They also go one
step further by attempting to rank emails without explicit
labeling from the user, although they do account for explicit
labeling in their linear logistic regression models, which were
explicitly chosen due to their ability to scale.

Along with the increased popularity of email over the last
few decades, came the proliferation of spam. Unfortunately,
the Simple Mail Transfer Protocol (SMTP), which is a stan-
dard protocol for electronic mail transmissions, has a num-
ber of limitations that spammers are able to capitalize on,
and thus it is somewhat of a self-crippling system. While
proposals exist to change SMTP in order to migrate the
cost of spam from SMTP receiving servers to the spammers
themselves (i.e. transition from a sender-push to a receiver-
pull model) [12], changes to the underlying core email in-
frastructure would require a worldwide overhaul. As a result
of these complexities, greylists and machine learning tech-
niques have become the default methods for spam detection,
many of which utilize textual analysis methods [21, 3, 25].
Caruana and Maozhen present a brief survey on current ma-
chine learning techniques for spam filtering, exploring both
text classification methods as well as emerging approaches
in peer-to-peer, social networking, and ontology-based se-
mantic spam detection [9].

Other classification techniques have also been presented
with the goal of assisting in email management. Bar-Yossef
et al. present a new cluster ranking technique on mailbox
networks—user-centric networks consisting of contacts with
whom an individual exchanges email—to discover and iden-
tify communities [5]. They assert that their framework can
be applied to generic clustering tasks as well. Grbovic et
al. present methods for distinguishing between personal and
machine-generated email and classifying messages into a few
latent categories [14].

Most of the previously proposed classification, filtering,
and ranking techniques rely on individual emails. In this
paper, we demonstrate that they can be further improved for

machine-generated email by applying them on a structural
template level.

3.2 Template Induction
Data on the web is generally formatted in such a way

that a machine can render it—thus presenting the data in
a human-readable format—but not necessarily extract the
pertinent information from it. For example, consider an
itinerary sent from an airline company to its customer via
email. The body of the message might contain images and
text. A number of HTML tables and cells organize the im-
ages, boilerplate text, and pertinent information (i.e. date,
flight number, airport codes) in such a way that when the
message is rendered the important information is presented
in a visually appealing manner to the user. However, it re-
mains a difficult task for the machine to automatically locate
among the HTML and text what is actually the central and
important information in the document.

It has been estimated that over 60% of overall email traffic
is comprised of machine-generated email [2], some of which
contain personal and important information (e.g. purchases,
tracking numbers, events, flights, hotel reservations). Tech-
niques for template or wrapper induction have been exten-
sively studied in an effort to enable the extraction of this
structured data from web pages [4, 16, 18]. However, there
is very little published work on using such structural tem-
plates for processing commercial email data.

3.3 Label Propagation
Label propagation operates on a geometric framework con-

sisting of a set of labeled and unlabeled points. The goal is
to predict the labels of unlabeled data using labeled data [27,
26, 7, 24]. Edge weights correspond to the relative similari-
ties between points. In each iteration the label distributions
of labeled points are propagated to each of their neighbors.
In turn, data points that receive label distributions from one
or more of their neighbors update their own label distribu-
tions according to a weighted sum of distributions propor-
tional to the incoming edge weights.

This semi-supervised technique is especially useful in the
age of big data considering that labeled data often come in
very small quantities while unlabeled data can be orders of
magnitude larger. A nice characteristic of this algorithm is
that labels naturally cluster together based on their simi-
larity metrics which enables multiple clusters per label to
emerge. Gregory presents an extension of label propagation
which enables multi-labeling for communities that might
overlap one another [15]. In this paper, we use EXPANDER,
the scalable label propagation framework presented by Ravi
and Diao [24].

4. EVALUATION

4.1 Experimental Setup
We explore the use of two template representations in

the experiments in the remainder of this section: bag-of-
words and topic distributions. In both cases we only use
terms found in the template’s fixed text, as described in
Section 2.1. For both representations, we discard 100 most
frequent terms that appear over the entire template cor-
pus, terms which appear fewer than 11 times in the entire
template corpus, and terms which appear in fewer than 6
unique sender domains. Additionally, we stem words using
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Label Example of email types # Labeled Templates
Finance Financial statements, stock reports, bank account updates. 262
Receipt Purchase receipts, order confirmations, shipping notices. 432
Travel Travel itineraries, hotel reservations, car rentals. 201

Table 2: Experimental labels.

Majority Label Centroid Similarity Label Propagation
Precision Recall Precision Recall Precision Recall

Finance 55.00 83.97 60.73 89.30 91.49 98.47 m, c
Receipt 89.35 79.63 85.05 95.87 97.82 93.52 c
Travel 86.57 86.57 86.62 95.33 95.00 94.53 m, c

Table 3: Label propagation vs. baselines: majority label, centroid (bag of words). Significant differences with Majority Label
and Centroid Similarity are marked by m and c, respectively (statistical significance measured using McNemar’s test with
p < 0.05).

the Porter stemming algorithm [22] and only consider En-
glish templates for the purposes of evaluation. While we
only investigate and evaluate English templates, since our
techniques are unsupervised and do not take into account
any language-specific features, we expect that they should
generalize to other languages without substantial loss in ef-
fectiveness.

As a corpus, we generate templates over mailboxes of com-
pany employees who voluntarily signed up in the evaluation
and agreed to participate in our experiment. We use several
thousands such mailboxes with a total of close to a million
machine generated emails. This data was treated with ut-
most care: for our evaluation, we examine only the generated
templates, and not any individual emails.

We manually label the templates into three predefined
categories in Table 2 for evaluation purposes. In order to
limit the space of labeled templates, in the majority of our
experiments, we only label templates for which the exist-
ing classification system (which is outside the scope of this
paper) labels at least one email in a template.

Each template is labeled by two human annotators. Dur-
ing evaluation we found that inter-annotator agreement was
above 90%. Templates for which no agreement was estab-
lished are disregarded for evaluation. Templates that did not
belong to any of these predefined categories were marked as
“unlabeled”.

4.2 Template Classification Experiments

4.2.1 Baselines
As baselines, we compare the precision and recall for ma-

jority label and centroid similarity label assignment tech-
niques (described in Section 2.3.1 and Section 2.3.2, respec-
tively) to the precision and recall of the hierarchical label
propagation approach (described in Section 2.3.3). In this
section, we use cosine similarity and bag-of-words template
representations for template graph construction.

These baseline comparisons are shown in Table 3. The
comparisons show that, for most labels, centroid similarity
improves both precision and recall over the simple major-
ity label approach. In particular, recall is significantly in-
creased, which is not surprising, given that we make use of
the inter-template information.

Overall, hierarchical label propagation outperforms both
of these approaches to a statistically significant degree. For
instance, for the Finance label, it increases the recall by

more than 10%, and precision by more than 50% compared
to the centroid similarity approach. This demonstrates that
using local template similarities is more beneficial than the
global centroid similarity alone.

Due to its superior performance, in the next section, we fo-
cus on the performance of the hierarchical label propagation
model. We analyze its performance with different similarity
metrics and template representations.

4.2.2 Hierarchical Label Propagation
We explore four different instantiations of the template

graph consisting of the combinations of topic and bag-of-
words models and using cosine similarity and KL divergence
as similarity metrics. Table 4 compares these combinations
of similarity metrics and template representations for the
hierarchical label propagation.

We find that while the hierarchical label propagation with
topics representation performs better than majority label
and is consistent across all labels, the technique effectively
suffers from a loss of resolution due to the use of Latent
Dirichlet Allocation, a form of dimensionality reduction, and
cannot improve much beyond about 90% for both precision
and recall regardless of the underlying similarity metric and
graph fan-out.

Overall, the bag-of-words fixed text term representation
has the most consistent performance across all labels1. Both
KL divergence and cosine similarity yield very similar re-
sults, and in both cases, both precision and recall are above
95%, which empirically validates the effectiveness of the hi-
erarchical label propagation approach.

We also investigate the impact of graph connectivity on
the precision and recall of the hierarchical label propagation
in Figure 3. We find that precision and recall is the high-
est when each node is connected to its nearest 10 neighbors.
While Figure 3 depicts the bag-of-words and cosine similar-
ity case, we observe similar results for the other instantia-
tions of the hierarchical label propagation as well. The intu-
ition behind this result is the iterativeness of the label prop-
agation algorithm, due to which graph connectivity plays a
central role in label propagation accuracy. For sparsely con-
nected graphs, it becomes more difficult for the correct label
to propagate to and affect the label distribution of distant

1However, we should note that the changes compared to
topic representation are in all but one case not statistically
significant.
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Topics [KL] Topics [CS] BoW [KL] BoW [CS]
Precision Recall Precision Recall Precision Recall Precision Recall

Finance 80.44 83.21 83.09 86.26 93.13 93.13 91.49 98.47
Receipt 88.40 82.87 89.78 85.42 93.47 96.06 97.82 93.52
Travel 88.61 89.05 86.79 91.54 95.24 89.55 95.00 94.53 tcs

Table 4: Comparison of algorithms for template label propagation: precision/recall per label. Template graph fan-out k =
10. Significant differences with Topics [CS] is marked by tcs (statistical significance is measured using McNemara’s test with
p < 0.05).

Figure 3: Precision/recall as a function of label propagation
graph fan-out.

Precision Recall Email coverage
Finance 93.08 99.64 +9.7%
Receipt 99.13 91.39 +16.8%
Travel 95.93 93.52 +5.7%

Table 5: Coverage increase per label.

nodes. On the other hand, densely connected graphs may
have many weakly weighted edges that ultimately introduce
noise to the propagated label distributions.

4.3 Coverage
One of the primary goals of this work is to increase the

coverage of the existing labels using the structural template
graph, compared to a high-precision email-based classifier.
In our first coverage experiment, we run the bag-of-words
cosine similarity hierarchical label propagation on all the
templates that have at least one underlying sample labeled
with either of the three aforementioned labels. In this way,
we can use the sample email labels as a prior distribution
for the label propagation algorithm.

The coverage results of this run are shown in Table 5. Pre-
cision and recall numbers in Table 5 are computed for only
the non-seed templates. Email coverage numbers demon-
strate the increase in the number of emails covered by the
labels when applying the propagated template labels to their
constituent documents. These results show that we can
achieve, on average across labels, 11% increase in email cov-
erage, while maintaining precision and recall well above the
90% mark.

Note however that while all the templates in this experi-
ment have some hint of being labeled by one of the three
aforementioned categories, there exists a large unlabeled
template set. Therefore, in our second coverage experiment
we instantiate a template graph consisting of all the tem-
plates, including those which do not have emails labeled as
Finance, Receipt, or Travel. The newly added unlabeled

Figure 4: Precision@{1-100} for unlabeled templates. Re-
sults reported for both top ranked templates, and mid-
ranked templates as comparison. P@X corresponds to the
measured precision over X templates beginning at either the
top or middle of the unlabelled set when sorted in descend-
ing order by most likely label weight.

templates outnumber the previous set of templates 7 to 1.
Again, we represent templates using bag-of-words, calculate
edge weights using cosine similarity, and connect each node
to the nearest 10 neighbors.

After running label propagation we order all previously
unlabeled templates by the weight of their most likely label
LT

OPT . We then conduct two evaluations on this list. First,
we measure precision at x top ranks (P@x) for the first 100
templates in the list. These precision numbers are repre-
sented by the dark-grey bars in Figure 4. Note that the top
10 templates are labeled with a total precision (over all three
labels) of about 75% while after the top 20 templates preci-
sion drops to below 60%. Second, we measure P@x starting
at the middle of the template list sorted by the most likely
label. The light-grey bars in Figure 4 represent these preci-
sion numbers, which hover around 40%.

Overall, the comparison between the dark and light grey
bars in Figure 4 demonstrates that there is a correlation
between the label weights assigned by the hierarchical label
propagation, and their correctness. Higher weighted labels
are more likely to be correct than the lower weighted labels.

The biggest factor contributing to low measures of preci-
sion in Figure 4 is the fact that the hierarchical label prop-
agation attempts to label the entire graph using only the
labels it is provided (i.e. Finance, Receipt, Travel), when in
fact, there are potentially a number of new labels that must
be introduced to cover the newly added set. We discuss the
prospect of label discovery in Section 4.5.

4.4 Scalability
As previously mentioned, one of our major motivations for

using templates to classify emails is their scalability. Accord-
ing to Figure 5a, nearly 80% of emails in our corpus can be
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(a) Email coverage. (b) Label propagation runtime.

Figure 5: Email coverage and label propagation runtime as a function of the template graph size, as measured by the number
of templates included in the graph.

Figure 6: Comparison of sender/template level pre-
cision/recall for label propagation over email/template
graphs.

covered using only 50% of the templates. Furthermore, the
absolute number of templates required is up to three orders
of magnitude less than the number of emails covered, since
a single template generally represents 100 to 1,000 emails,
as seen in Figure 5a. Since the runtime of the label propaga-
tion algorithm is approximately proportional to the size of
the graph, as seen in Figure 5b, by using templates for clas-
sification instead of emails we can reduce runtime by orders
of magnitude.

While templates scale better than emails, it is important
to also consider the trade-offs in terms of the classifier per-
formance. In Figure 6 we compare the effectiveness of the
two approaches. Since emails do not have an equivalent la-
bel distribution that is characteristic to templates, and is
used for seed selection, we cannot select seed nodes for the
email graph using the same techniques used for the tem-
plate graph. In place of the seed selection procedure, we
experiment by randomly selecting some percentage of la-
beled emails as seed nodes (this percentage is labeled in
Figure 6). We find that the template-based hierrarchical la-
bel propagation precision is comparable to using emails in
the underlying graph structure, when we use either 50% or
80% of the emails as seed nodes for label propagation, and
its recall is comparable to the 50% case.

4.5 Label Discovery
Table 6 demonstrates top topics for templates to which no

existing labels were propagated. As such, these templates
potentially belong to new undiscovered labels. Recall that
each topic x, has a certain weight w(x,T) for template T.
Topics are ranked for each label L (including an empty label
L∅ for unlabeled templates) as:∑

T∈L w(x,T)∑
T w(x,T)

.

Intuitively, top topics per label are the topics that are more
likely to be associated to the label (including the empty
label), compared to the entire collection.

The top topics for the unlabeled emails reveal interest-
ing potential common themes for the unlabeled set. For in-
stance, there are topics for live music shows, fashion promo-
tions or newsletters, and business-related announcements.

These preliminary results indicate that our label propa-
gation technique, in conjunction with template-based topic
models, is useful not only for improving coverage for a pre-
specified label set, but also for discovering new emerging
labels from the data.

5. CONCLUSION
In this paper, we have presented three new algorithms for

classification of machine-generated emails using structural
templates: majority label, centroid similarity, and hierarchi-
cal label propagation. We explored a number of underlying
template representations including bag-of-words and topic
distributions, different similarity metrics in template graph
construction, and varying degrees of graph connectivity.

Our empirical evaluation demonstrates the superior ef-
fectiveness of the hierarchical label propagation technique
using a template graph. Not only does it scale far better
than email-based label propagation, but it is also compara-
ble to it in terms of precision and recall. Hierarchical label
propagation achieves above 90% precision and recall for all
labels, while increasing the labeling coverage by more than
11%. Our experiments also demonstrate that hierarchical
label propagation, along with template topic modeling, can
be used for discovery of new labels in the corpus.
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Unlabeled
Business & Tech Music Social Fashion Politics

develop music music story fashion say thank
technolog world ticket her deal govern contribut

job love show his sale american support
learn artist live video design polit campaign

compani star band friend brand obama donat

Table 6: Top topics for unlabeled templates. Each column shows top 5 stems per topics. Headers in italics represent a
human-assigned topic label.
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